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Shear versus vortex-induced lift force on a rigid
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The lift forces on rigid spheres entrained in a vortex and a linear shear flow are
computed using a direct numerical simulation. The sphere Reynolds number is in the
range 10 to 100. The lift coefficient in a vortex is shown to be nearly two orders of
magnitude higher than that in a shear flow. The inviscid mechanism is shown to be
inadequate to account for the enhanced lift force. The effect of free rotation of the
sphere is also shown to be too small to account for the enhanced lift force. Flow
structure around the sphere is studied to explain the generation of the strong lift force
in a vortex.

1. Introduction
The lift force on spheres in rotational flows, such as shear flows and vortices,

has been a subject of interest for many years. In a linear shear flow, for moderate
values of Reynolds number in the range 10 to 100 and non-dimensional ambient
vorticity below 0.1, the lift coefficient computed by Kurose & Komori (1999) and
Bagchi & Balachandar (2002a) was generally very small, in the range −0.01 to 0.01.
In particular, they observed the lift coefficient to become negative above a Reynolds
number of about 50. In contrast, the measurements of Sridhar & Katz (1995) for the
case of bubbles in a vortical flow, over the same Reynolds number range and non-
dimensional ambient vorticity, showed an order of magnitude larger lift coefficient, in
the range 0.1 to 0.3. The experiments considered contaminated bubbles, which behave
like rigid spheres, entrained in a vortex. The measured lift force was always positive,
directed away from the centre of the vortex and was observed to be independent of
the Reynolds number.

In the inviscid limit, the lift force on a sphere in a linear shear flow is different from
that in a vortex (ambient fluid in rigid body rotation) (Auton, Hunt & Prud’homme
1988). Under steady conditions the force on the sphere in the inviscid limit can be
written as

F = mf(1 + CM)u · ∇u+ mfCILur × ω, (1.1)

where ur = u − v is the slip velocity, v is the velocity of the sphere, u and ω are the
velocity and vorticity of the undisturbed ambient flow at the centre of the sphere and
mf is the mass of fluid displaced by the sphere. The coefficients CM and CIL are the
added-mass and the inviscid lift coefficients, and for a sphere, the former is always
1/2, while the latter is 1/2 provided the vorticity and any unsteady effects are weak
(Auton et al. 1988). The contribution from the second term on the right-hand side
remains the same in a shear flow and in a vortex. The contribution from the first
term for a shear flow is identically zero, while for a vortex its contribution is negative,
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directed towards the centre of the vortex. Thus according to inviscid theory the lift
force on a rigid sphere in a vortex is less than that in a linear shear flow.

In the creeping flow limit, neither a linear ambient shear nor an ambient solid
body rotation influences the force on the sphere. At small but finite Reynolds number
(Re < 1), the shear-induced lift force (Saffman 1965) and the lift force in a vortex
(Herron, Davis & Bretherton 1975) are both positive (directed from the low-speed
to the high-speed side of the sphere) and are proportional to the square root of the
ambient vorticity. However, the lift force in a vortex is about 24% larger.

In view of the above predictions of the inviscid and low-Re theories, the substantially
enhanced lift force in a vortex measured by Sridhar & Katz (1995) is intriguing. They
suggested rotation of the sphere as a possible mechanism for the enhancement. Here
we will perform well-resolved three-dimensional direct numerical simulations of a
stationary rigid sphere in an ambient flow of solid body rotation. The results on the
detailed flow field and forces on the sphere will be compared to those for a sphere
subjected to a linear shear flow. The range of sphere Reynolds number considered
here is 10 to 100 and the dimensionless ambient vorticity will be varied up to 0.1. It
is of particular interest to see if the sphere experiences a substantially enhanced lift
force in the case of a vortex. The viscous and pressure contributions will be separated
to highlight the role of the no-slip condition. In addition to the stationary sphere, we
will also perform direct numerical simulations of a rigid sphere in a vortex, which is
allowed to freely rotate in response to the hydrodynamic torque acting on it. These
simulations will illustrate the effect of sphere rotation on the wake structure and on
the lift and drag forces. It must be emphasized that the present simulations do not
reproduce the precise experimental conditions of Sridhar & Katz (1995) – the ambient
flow is an idealized solid body rotation and the sphere is held fixed and not allowed
to translate. Therefore comparison with their results is only qualitative.

2. Methodology
We employ a direct numerical simulation (DNS) technique using a high-resolution

pseudospectral method to study the flow past a sphere. The ambient linear shear and
vortex flows are given by

shear: UX = |ur|eX + ωY , UY = 0, UZ = 0, (2.1)

vortex: UX = |ur|eX + 1
2
ωY , UY = − 1

2
ωX, UZ = 0, (2.2)

where X,Y , Z represents a fixed reference frame. The centre of the sphere of diameter
d is located at the centre of this frame. The relative velocity measured at the centre
of the sphere is ur , and it is directed towards the positive X-axis. The dimensionless
vorticity ω∗ is in the range 0.04 to 0.1 and the Reynolds number Re is in the range
10 to 100, which are chosen to match the experimental condition of Sridhar & Katz
(1995).

The DNS scheme used in this study employs a Fourier–Chebyshev collocation
scheme for spatial discretization, and a two-step time-split scheme for time advancing.
The governing equations (continuity and momentum) are solved in a spherical domain
(d/2 6 r 6 D/2, 0 6 θ 6 π, 0 6 φ 6 2π) of outer boundary D that is 30 times the
diameter of the sphere. At the inflow section of the domain, the undisturbed ambient
flow given by (2.1) or (2.2) is specified. At the outflow section, a non-reflecting
boundary condition is employed by parabolizing the governing equations. On the
surface of the sphere, the no-penetration and no-slip conditions are satisfied. A typical
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Present results

Vortex Shear
Sridhar & Katz Kurose & Komori

Re ωd/|ur| Vortex Shear

25 0.04 0.182∗ (0.15–0.3)† 0.001 0.181 0.005
50 0.04 0.182∗ (0.15–0.3)† −0.001 0.137 0.001

100 0.04 0.182∗ (0.15–0.3)† −0.004 0.097 −0.003
50 0.1 0.179∗ (0.1–0.25)† −0.002 0.347 0.001

100 0.1 0.179∗ (0.1–0.25)† −0.008 0.237 −0.008

Table 1. Lift coefficients on a rigid sphere in vortex and shear flows. ∗ Based on 0.5(ω∗)0.25;
† based on the data given in Sridhar & Katz (1995).

grid used in the present computation has 111 points in the radial direction, 112 points
in the tangential direction and 48 points in the azimuthal direction. The resultant
force on the sphere is computed by integrating the pressure and viscous stresses on
the surface of the sphere. Further details on the methodology and implementation
are given in Bagchi & Balachandar (2002b).

3. Results
3.1. Lift and drag forces

The lift coefficients defined as

CL =
FY

1
2
πρf |ur|2( 1

2
d)2
, (3.1)

computed from the present simulations for the shear and vortex flows are shown in
table 1. In the above equation FY is the dimensional force along the Y -direction, and
ρf is the density of the fluid. The lift coefficients measured by Sridhar & Katz (1995)
for the case of bubbles in a vortex are also shown: both the range of CL estimated
from their data, and the values obtained from the curve fit 0.5(ω∗)0.25 are shown
(ω∗ = ωd/|ur| is the non-dimensional vorticity). In the case of linear shear flow the
lift coefficients are very small and decrease with increasing Re and become negative
for Reynolds number greater than about 50, which is consistent with the results of
Kurose & Komori (1999). The computed lift coefficients for a stationary sphere in a
vortex are more than an order of magnitude larger and for all the cases considered
remain positive.

The DNS results for the vortex are only in qualitative agreement with the exper-
imental results of Sridhar & Katz (1995): they both show substantially enhanced
lift when compared to the corresponding linear shear flow at the same Re and ω∗.
The idealized solid body rotation for the undisturbed ambient flow considered in the
present simulations is only a crude approximation to the experimentally generated
vortex ring. In the experiments the bubble is allowed to freely move and the resulting
slip velocity between the bubble and the surrounding flow is likely to have both radial
and circumferential components. In the computations, by considering a stationary
sphere the slip velocity has been constrained to be purely circumferential. Other
differences could arise from the unavoidable experimental uncertainties in tracking
bubble location, size and sphericity. Such differences contribute to the quantitative
disagreement between the computed and experimental results.

Figure 1 shows the variation of the lift force with Re and ω∗ for both the linear
shear and vortex flows. The corresponding inviscid predictions, which are also plotted
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Figure 1. Variation of the lift forces with Re and ω∗. (a) Thick lines are inviscid results;•, Re = 100; ©, Re = 50; �, Re = 25. (b) •, ω∗ = 0.016; ©, ω∗ = 0.04; �, ω∗ = 0.1.
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Figure 2. Streamlines for the fixed spheres at Re = 100, ω∗ = 0.1 in (a) vortex flow and
(b) linear shear flow. The dashed line indicates the centreplane.

in the figure, show that for both the linear shear and vortex flows the actual lift force
is oriented in the opposite direction. The lift coefficient for the vortex case shows a
near linear increase with the ambient vorticity. In contrast to the experimental results
of Sridhar & Katz (1995), figure 1(b) shows a clear monotonic decrease in CL with
increasing Re. Over the range of parameters considered a good fit of the DNS data
can be obtained as

CL =
24

Re
[1 + 0.597Re0.593]ω∗. (3.2)

In comparison, over the range of Re and ω∗ considered the drag force remains
insensitive to ambient shear and solid body rotation.

Figure 2 compares the streamlines for the linear shear and vortex flows at Re = 100
and ω∗ = 0.1. At this Re the flow is steady and the (X,Y )-plane (Z = 0) is a plane
of symmetry, on which the out-of-plane velocity is identically zero; in figure 2 the
streamlines correspond to the in-plane velocity. Clearly both the ambient shear and
pure rotation break the axisymmetry about the X-axis, which one would otherwise ob-
serve for a uniform cross-flow. However, the structure of the wake flow is significantly
different in the vortex and shear flow cases. In the vortex flow, the front stagnation
point is located slightly below the centreplane (Y = 0), and the rear stagnation point
is pushed up above the centreplane. In the shear flow, however, the stagnation points
are located on the centreplane.

The lift coefficient can be decomposed into the pressure and shear stress contribu-
tions. Note that the normal viscous stress on the surface of the sphere is identically
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Figure 3. Surface pressure coefficients for the fixed spheres at Re = 100, ω∗ = 0.1 in (a) vortex
flow and (b) linear shear flow. ——–, CP averaged over the azimuthal direction φ from 0 to 2π;
- - - - -, CP along φ = 0 (top surface); · · · · · ·, CP along φ = π (bottom surface).

zero, and hence does not contribute to the drag or lift forces. The pressure and shear
stresses are made dimensionless by ρf |ur|2. The pressure contribution in terms of the
surface pressure coefficient CP is shown in figure 3. We consider the variation of CP
with the tangential direction θ along φ = 0 and φ = π, where CP has extremum
values. Here θ increases from 0 to π from the rear to the front of the sphere, and
φ = 0 and φ = π correspond to the top and bottom meridional lines. The φ-averaged

CP , defined as 〈CP 〉 = (1/2π)
∫ 2π

0
CP dφ is also shown. Consider first the vortex flow.

On the windward side of the sphere (θ > π/2), a higher-than-average pressure is
generated over the bottom surface, while a lower-than-average pressure is generated
over the top surface. As a result, a strong upward (or, positive) Y force is generated
on the windward side. On the leeward side (θ < π/2), a higher-than-average pressure
exists over the top surface, and a lower-than-average pressure exists over the bottom
surface. Thus a negative force is generated on the leeward side. However, due to
the presence of the wake, the pressure is not fully recovered on the leeward side.
Therefore the positive contribution coming from the windward side outweighs the
negative contribution from the leeward side, making the net pressure contribution
positive. Consider next the case of a shear flow. The windward side now makes a
negative contribution. Some positive contribution exists near θ = π/2. The integrated
effect is a very small lift force, which is positive at low Re, and negative at higher Re.

The shear stress contribution to the lift force is shown in figure 4 in terms of surface
contours of (τrθeθ+τrφeφ)·eY . A positive contour indicates a local positive contribution
to lift. In the case of a vortex, the stronger shear on the upper front quadrant of the
sphere contributes positively to the lift force, and outweighs the negative contribution
arising from the somewhat weaker shear over the bottom quadrant. In the shear flow,
the positive and negative contributions nearly balance each other. In both the vortex
and the shear flow, very little contribution to the pressure and viscous components of
the lift force comes from the wake region, thus emphasizing the effect of no slip and
the presence of a recirculation region and the associated lack of pressure recovery. In
both cases the shear stresses contribute about 50% to 60% of the total lift force.

The force coefficient, CF = CDex +CLey , for the present case of a stationary sphere
in a steady ambient flow, can be written as

CF = 4
3
(1 + CM)u∗ · ∇u∗ + 4

3
CILûr × ω∗ + C sv, (3.3)
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Pressure gradient Inviscid Steady viscous
and added-mass rotational lift

Re ωd/|ur| Vortex Shear Vortex Shear Vortex Shear

25 0.04 −0.04 0.0 0.027 0.027 0.194 −0.022
50 0.04 −0.04 0.0 0.027 0.027 0.150 −0.026

100 0.04 −0.04 0.0 0.027 0.027 0.110 −0.030
50 0.1 −0.1 0.0 0.067 0.067 0.380 −0.066

100 0.1 −0.1 0.0 0.067 0.067 0.270 −0.075

Table 2. The dimensionless contributions to the lift force from different terms in (3.3).

(a) (b)Y

X

Figure 4. Contours of the Y -component of the shear stress on the surface of the sphere: (a) vortex
flow, (b) shear flow. Because of symmetry, only one half of the sphere is shown. The contours are
plotted in steps of 1.0. The dashed lines indicate negative values. The flow is from left to right. The
view shown here is looking towards the negative Z-axis.

where ûr is the unit vector along ur , and the symbol ∗ is used to denote dimensionless
quantities (|ur| and d are used as the velocity and length scales). In the above equation
all the fluid quantities (u∗ · ∇u∗, ω∗) are of the undisturbed ambient flow evaluated
at the centre of the sphere. At moderate Re, in addition to the inviscid forces
represented by the first two terms on the right, the steady viscous effect C sv also
makes an additional contribution to the force. With CM = CIL = 1/2, the inviscid
forces are known and therefore C sv can be extracted from the computed total force.
The lift component of C sv is shown in table 2 along with the inviscid forces for both
the shear and vortex. The added-mass and pressure gradient forces (first term on the
right) contribute negatively for the vortex, whereas they are zero for the shear flow.
The inviscid lift force, which depends only on the vorticity magnitude, is the same in
both the vortex and the shear flow. It is always positive, i.e. directed outward from
the centre of the vortex. The steady viscous force, on the other hand, is significantly
different for the two cases. In a vortex, it is several times larger than the inviscid
forces. As a result, a strong radially outward lift is generated for the case of a vortex.
In the case of a shear flow, the steady viscous contribution remains comparable to the
inviscid lift force. Thus the net lift force is small in a shear flow, and its sign changes
from positive to negative with increasing Re.
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3.2. Free motion in a vortex

Here we consider the effect of the high values of the lift force on the motion of a
sphere in a vortex, as in the experiments of Sridhar & Katz (1995). For a sphere
located at a distance r from the centre of the vortex, the equation of radial motion in
cylindrical polar (r, γ, z) coordinates is

(ρ+ 1
2
)
∂vr

∂t
= (ρ+ 1

2
)
v2
γ

r
− 3

2

u2
γ

r
+ 1

2
(1 + f)(u− v)× ω − CD

(
3

4d

)
|u− v|vr, (3.4)

where ρ = ρp/ρf is the sphere-to-fluid density ratio. The quantity f provides the
relative measure of the steady viscous lift force compared to the inviscid lift, and is
given by

C sv · ey = 4
3
CILfûr × ω∗. (3.5)

The values of f can be obtained from the lift coefficients in table 2. In the inviscid
limit f = 0, while over the moderate Re considered here it ranges from about 4 to 15.
Consider a sufficiently small sphere, whose circumferential slip velocity to the leading
order can be expressed as (Ferry & Balachandar 2001)

uγ − vγ ≈ εuγ, (3.6)

where the constant ε = 1
2
τ2|ω|2, can be interpreted as the square of the ratio of particle

time scale, τ, to the vortex time scale, 1/|ω|. The above leading-order approximation
for the circumferential slip becomes increasingly accurate for small ε. From (3.4) the
radial acceleration is given by

u2
γ

r

[
(1− ε)2 − 3

(2ρ+ 1)
+

2ε(1 + f)

(2ρ+ 1)

]
− CD 3|u− v|vr

2d(2ρ+ 1)
. (3.7)

The first term within the square brackets accounts for the centrifugal force arising
from the circumferential motion of the sphere and the second term accounts for the
pressure gradient and added-mass forces arising from hydrodynamic interaction with
the surrounding fluid. These inertial effects account for the familiar radial outward
migration of heavier-than-fluid particles (ρ > 1) and inward migration of lighter-
than-fluid bubbles (ρ < 1). The radial component of the drag force is directed such
that it opposes any radial motion of the sphere. The interest here is in the effect of
the lift force which appears as the third term within the square bracket. This term
accounts for both the inertial and steady viscous components of the lift force and is
proportional to the circumferential slip velocity (i.e. linear in ε). The lift force will
have a negligible effect on the radial motion of very heavy particles (ρ� 1). The lift
force can however have a strong influence on the radial migration of lighter-than-fluid
particles and bubbles. The present results show that the total lift force, due to the
steady viscous contribution, can be significantly larger than the inertial lift. The effect
of the lift force is to slow down the radial inward migration of bubbles, and such
slowing down in the bubble entrainment process has been observed by Sridhar & Katz
(1995). In fact, surprisingly, under the right conditions, it is possible for a bubble to
migrate radially outward when the lift force begins to dominate the pressure gradient
and added-mass forces.

3.3. Sphere rotation

We now consider the effect of sphere rotation. The viscous stresses over the surface of
the sphere generate a hydrodynamic torque, which results in the angular acceleration
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Re ωd/|ur| CL Magnus lift Ωpd/|ur|
25 0.04 0.189 0.008 (4%) 0.017
50 0.04 0.146 0.009 (6%) 0.017

100 0.04 0.113 0.016 (14%) 0.017
50 0.1 0.403 0.056 (14%) 0.037

100 0.1 0.255 0.018 (7%) 0.040

Table 3. Lift coefficients for a freely rotating rigid sphere in vortex. The Magnus lift is computed
by the difference between the total lift forces on stationary and freely rotating spheres. The values
in brackets indicate percentage of the total lift.

of the sphere. Under a steady ambient condition, the sphere will reach a terminal
angular velocity at which the net torque on it is zero. Sridhar & Katz (1995)
conjectured that the free rotation of the bubbles in their experiments was possibly
responsible for the enhanced lift force in vortex. In order to address this issue,
we have also simulated the flow past a stationary but freely rotating sphere in a
vortex. In this case, in addition to the fluid flow equations, an angular momentum
equation,

T = I
dΩp

dt
, (3.8)

is also solved for the rotational motion of the sphere, which provides the slip boundary
condition on the surface of the sphere. T is the hydrodynamic torque on the sphere
evaluated by integrating the shear stresses, I is the moment of inertia, and Ωp is the
sphere rotation rate. The sphere is allowed to rotate freely and reach a steady state.
The lift coefficient under this torque-free steady condition is presented in table 3 and
can be compared with that for a non-rotating sphere. Two different sphere-to-fluid
density ratios, ρ = 1.5 and 5, were considered, which affected only the transient, and
the final steady state was independent of ρ. The free rotation of the sphere contributes
to an increase in the lift force due to the Magnus effect. However, its contribution
is only 4%–14% of the total lift and can be considered to be only of secondary
importance. In the case of shear flow as well, the effect of free rotation was observed
to be quite weak (Bagchi & Balachandar 2002a).

The terminal rotation rate Ωp of the sphere is also shown in the table. When scaled
by the ambient rotation rate, the particle rotation rate is in the range 0.37 to 0.43,
and nearly independent of Re and ω∗. It has been established in a shear flow that
only in the Stokes limit does the sphere rotate at the same rate as the ambient flow
and that as Re increases the terminal rotation rate of the sphere decreases (Poe &
Acrivos 1975; Lin, Perry & Schowalter 1970; Ding & Aidun 2000; Patankar et al.
2001; Bagchi & Balachandar 2002a). For example, over the parameter range under
consideration, in a shear flow the rotation rate of the sphere ranges from about 40%
to 70% of ambient rotation rate. The flow structure around a freely rotating sphere in
a vortex is shown in figure 5. No significant difference can be observed with the case
of the non-rotating sphere shown in figure 2(a). Indeed, for a freely rotating sphere, a
region of free streamline flow is expected to exist near the surface. But in the range of
Re and vortex strength considered here, this region is extremely narrow (not visible
up to the plotting accuracy). Thus the wake generated by the translational slip is far
more important than the influence of any rotational slip between the sphere and the
surrounding flow.
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Figure 5. Free sphere in a vortex at Re = 100, ω∗ = 0.1. (a) Streamlines on Z = 0 plane,
(b) surface pressure coefficients. ——, CP averaged over φ; - - - - -, CP along φ = 0; · · · · · ·, CP along
φ = π.

4. Conclusion
The purpose of this paper is to consider the problem of a rigid sphere in an

otherwise undisturbed ambient flow of solid body rotation and quantitatively compare
the results with the corresponding situation of a sphere in a linear shear flow of the
same ambient vorticity magnitude. The difference between the two cases is clearly
the presence of an ambient straining motion, in addition to vorticity, in the case
of the linear shear flow. Analytical results for the above two cases, in both the
inviscid and low-Re limits are available (Auton et al. 1988; Saffman 1965; Herron
et al. 1975). Here the interest is in moderate Reynolds numbers (Re ∼ 10–100), and
dimensionless vorticity up to 0.1, and we employ direct numerical simulation. The
lift coefficient in a vortex is shown to be nearly two orders of magnitude higher
than that in a shear flow. The significantly enhanced lift force at moderate Re is
in contrast to the results of the inviscid and low-Re theories. The viscous part of
the lift force is isolated from the DNS results, and is shown to have opposite signs
in the vortex and shear flows. The effect of the two different ambient flows on the
detailed flow field around the body, in particular in the wake region, and the impact
on the generation of lift force is studied. The effect of the strong positive viscous lift,
which originates from a circumferential slip, on the radial migration of the sphere in
a vortex is discussed. Additional DNS have been performed for a sphere allowed to
freely rotate in response to hydrodynamic torque acting on it. A comparison of the
results for the rotating and non-rotating spheres shows that the effect of free rotation
is only secondary and cannot account for the enhanced lift in vortex.

The above results are qualitatively supported by the experimental results of Sridhar
& Katz (1995), who measured substantially enhanced lift force for contaminated
spherical bubbles entrained in a vortex. Their lift forces were also more than an
order of magnitude larger than the corresponding values in a linear shear flow.
The present simulations, however, do not duplicate their experimental condition and
therefore quantitative differences exist between the present computational and the
experimental results. For the case of a clean bubble (which satisfies a stress-free
condition on its surface as opposed to no-slip), recent studies by Magnaudet &
Legendre (1998) and Legendre & Magnaudet (1998) show that at larger Reynolds
numbers the behaviour in both the shear flow and the vortex is captured well by the
inviscid theory. The present DNS results and the measurements of Sridhar & Katz
(1995) are markedly different from these results on clean bubbles, and hence they
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emphasize the role of the no-slip boundary condition in the generation of the lift
force.

This work is supported by the DOE ASCI Center for Simulation of Advanced
Rockets at the University of Illinois at Urbana-Champaign. Computations are per-
formed at the National Center for Supercomputing Applications at UIUC.
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